

ERTLab64TM software – TUTORIAL Modulo Sequencer

Marzo 2015

Geostudi Astier srl

ertlab@geoastier.it

www.geostudiastier.com

1

Cos'è ERTLab[™] Sequencer

1. Interfaccia per PROGETTARE LA DISPOSIZIONE DEGLI ELETTRODI

secondo geometrie 2D e 3D, in superficie e in foro

- 2 diversi metodi di immissione della geometria del sistema (grid/cable)
- Vista 3D degli elettrodi
- Controllo tramite mouse per la selezione e l'editing degli elettrodi

2. GENERATORE DI SEQUENZE

- Generazione di sequenze 2D e 3D su configurazioni diverse
- Generazione di sequenze con elettrodi in superficie, in foro o misti superficie/foro
- Due diversi metodi di creazione delle sequenze:
 - Griglie superficiali o profili
 - Sequenze Cross cable per misure in foro o superficie

3. STRUMENTO DI SUPPORTO PER LA GENERAZIONE DELLE SEQUENZE

- / Tool di creazione di quadripoli reciproci
- Ottimizzazione Multi-canale (riordinamento per Trasmettitore AB)
- Modalità per la rimozione di elettrodi e acquisizione roll-along

1. Inserire cavi ed elettrodi

Inserimento di cavi/elettrodi

Tipologie di configurazioni elettrodiche 3D

Regole generali per gli elettrodi

ERTLab[™] Sequencer raggruppa logicamente gli elettrodi secondoGRUPPI SPAZIALMENTE OMOGENEI, chiamati "CAVI".

Nella costruzione di un sistema di elettrodi, ricordare TRE REGOLE:

- **REGOLA I** Ogni elettrodo appartiene ad **un cavo**
- **REGOLA II** Un cavo è composto da almeno due elettrodi
- **REGOLA III** Elettrodi appartenenti allo **stesso cavo** hanno un **comportamento comune** nella costruzione delle sequenze

Esistono due metodi per l'inserimento degli elettrodi/cavi nel sistema (*menu LAYOUT*):

Metodo CABLES

Definisce uno o più cavi specificando:

- Numero di elettrodi
- Spaziatura e/o coordinate di inizio e fine cavo

Metodo GRID

Definisce gli elettrodi su di un una griglia piana (1 cavo) attraverso l'utilizzo del mouse

I due metodi sono alternativi: **non è possibile** mescolare cavi costruiti con due diverse modalità

Metodo GRID per l'inserimento degli elettrodi

Come funziona

: Layou	t Sequ	nice T	ools iik	-ip						-
àrid —					-				1	
< Grid Siz	e	6	× Gric	d Spacing	,	1 🖃	Grid	Rst		
' Grid Size	e 🗌	8 ÷	Y Gric	Spacino		7 -	<u> </u>		1 1	
		Rim	uove tu	ıtti gli 📱			_	-		
		eleti	trodi ins	seriti						
								Create	Flec	
								0.0000	- LIOO.	
ID View -										
ID View-			K coord	t t	F					_
ID View-	0.00	1.00	COOR 2.00	d 3.00	4 00	5.00				
D View -	0.00	1.00	C COORC 2.00 3	3.00 4	4 00	5.00				
D View -	0.00	1.00 2 11	<mark>< coord</mark> 2.00 3 10	3.00 4 9	4 00 5 ● 8	5.00 6 7				
D View -	0.00 1 12 13	1.00 2 11 14	Coord 2.00 3 10 15	3.00 4 9 16	4 00 5 8 17	5.00 6 7 18				
D View -	0.00 1 12 13 24	1.00 2 11 14 23	COOR 2.00 3 10 15 22	3.00 3.00 4 9 16 21	4 00 5 8 17 20	5.00 6 7 18 19				
D View-	0.00 1 12 13 24 25	1.00 2 11 14 23 32	COOR 2.00 3 10 15 22 33	3.00 4 9 16 21	4 00 5 8 17 20	5.00 6 7 18 19				
D View -	0.00 1 12 13 24 25 26	1.00 2 11 14 23 32 31	Coord 2.00 3 10 15 22 33 34	3.00 4 9 16 21	4 00 5 ● 8 17 20	5.00 6 7 18 19				
D View -	0.00 1 12 13 24 25 26 27	1.00 2 11 14 23 32 31 30	COOR 2.00 3 10 15 22 33 34 35	3.00 4 9 16 21	4 00 5 8 17 20	5.00 6 7 18 19				

- 1. Selezionare le dimensioni in x e y della griglia (usare le frecce o scrivere un valore seguito da Enter)
- Specificare le spaziature in x e y in metri (usare le frecce o scrivere un valore seguito da Enter)
- 3. Premere Grid per creare la griglia
- 4. Definire gli elettrodi sulla griglia cliccando sulle celle
- Pulsante sinistro del mouse incrementa il numero dell'elettrodo
- Pulsante destro del mouse decrementa la numerazione elettrodica
- Digitare *DEL* per rimuovere gli elettrodi in caso di errore

5. Creare il set di elettrodi

Metodo GRID per l'inserimento degli elettrodi

Generazione degli elettrodi

File Layout Seq	Jencer Equence T	ools Help				
Grid X Grid Size Y Grid Size 3D View	6 +	X Grid S Y Grid S	pacing [pacing [1 +	Grid Rst Create Elec.	
0.00 0.00 1.00 1 2.00 1 3.00 2 4.00 2 5.00 2	0 1.00 1 2 2 11 3 14 4 23 5 32 6 31	2.00 3 3 10 15 22 33 34	3.00 4. 4 9 16 21	00 5.00 5 6 8 7 17 18 20 19		
6.00 2	7 30	35				Grd. Auto

Impostazione della griglia (GRID)

Cavo ed elettrodi generati

Lo svilippo del cavo segue la numerazione progressiva degli elettrodi

Quando è preferibile utilizzare questa modalità?

- 1) Creazione rapida di griglie di elettrodi di superficie (es. 12x4, 6x8,...) o profili 2D
- 2) Creazione di geometrie di superficie complesse (elettrodi intorno ad edifici, ecc..)
- 3) Casi di numerazione non continua degli elettrodi

- Il metodo *GRID* gestisce solo configurazioni di superficie (piano xy).
- Il metodo *GRID* pone TUTTI gli elettrodi su UN SOLO CAVO, per cui la generazione di sequenze *cross-cable* tra diversi gruppi omogenei di elettrodi (cavi) non funziona.

Esempio 1. Geometrie complesse

Tutti gli elettrodi giacciono sullo stesso cavo (gruppo omogeneo)

Metodo GRID per l'inserimento degli elettrodi

Esempio 2. Numerazione elettrodica non continua

2														ERTLa	ab Seq	uence	r
File Layout S	equence	Tools	; Help														
Grid X Grid Size	48 • 2 •	X Grid	d Spacing d Spacing	1		Grid	Creal	te Elec.	F C	View < 30. < 0. < 0. < 1 Pan: Ctrl+L Show: ✓ Cable Lbl Electrodes	ftMouse	e > [y > F z > f d C Qu	Drtho. Persp.				
- 3D View																	
0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00 1
1.00 25	24	26	23	27	22	28	21	29	20	30	19	31	18	32	17	33	16
0.00																	

Esempio di utilizzo

Impiego di georesistivimetro Syscal a 48 elettrodi con lo strumento ad una estremità dello stendimento e due cavi paralleli affiancati e traslati di metà spaziatura elettrodica.

Metodo CABLE per l'inserimento degli elettrodi

Come funziona

- Numero totale dei cavi inseriti
- Cavo corrente: si seleziona specificandone nr. nel box + Enter oppure con doppio click sul corrispondente oggetto grafico
- Il cavo corrente (selezionato) è evidenziato con colore rosso nella finestra grafica 3D
- Il cavo corrente (selezionato) può essere modificato/aggiornato modificando le coord. Cable Start/End e poi cliccando sul pulsante "Update Cbl"
- Il cavo corrente (selezionato) può essere rimosso cliccando sul pulsante "Remove"

Metodo CABLE per l'inserimento degli elettrodi

Quando è preferibile usare questa modalità?

- 1) Configurazioni in foro
- 2) Profili 2D o griglie 3D di superficie
- Per dividere elettrodi secondo gruppi distinti: ciascun gruppo può essere caratterizzato da un comportamento diverso durante la generazione della sequenza (es. sequenze *cross-cable* per acquisizione 3D in foro, geometrie a forma di L o C, definizione di un gruppo di elettrodi che lavorino solo come ricevitori, ...)

RICORDARE:

Quando si esportano gli elettrodi in un formato che supporti solo la numerazione assoluta degli elettrodi (es. sequenze in formato IRIS), una numerazione globale è assegnata agli elettrodi seguendo l'ordine (id) di inserimento del cavo.

Esempio 1. Multi-borehole

Metodo CABLE per l'inserimento degli elettrodi

Esempio 2. Geometrie a L

ERTLab Sequencer	
Eile Layout Sequence Iools Help	
CableCountSpacingInsertMove CableElectrodes:241.BoreEnter toY(m)Z(m)UpdateCableYCable Start36.523.50.Cable End:36.50.5Cable End:36.50.5Remove AllRotation 90*Remote 10.00.0Cable Count:2Remote 20.00.02Cable Selected:(37-60)	
] 3D View	ZmX ZmZ Reset
Esempio: Se vogliamo che questi elettrodi funzionino solo come ricevitori,li disponiamo su un cavo separato (ramo di elettrodi a comportamento omogeneo) e poi generiamo opportunamente la sequenza cross-cable.	
 X= •92.98; Z= 45.9)	Grnd. Auto Grnd. Spc. 5.0

Metodo CABLE per l'inserimento degli elettrodi

E' possibile inserire cavi/elettrodi caricandoli da file. Formato .txt a cinque colonne: id_cavo id_elettrodo x y z. (senza intestazioni e senza righe bianche alla fine del file).

1. Creare il file .txt

Eile	<u>M</u> odifica	F <u>o</u> rmato	<u>V</u> isualizza	2		
μ	1		0.0	0.0	0.0	~
1	23		2.0	0.0	0.0	
i	4		3.0	ŏ.ŏ	ŏ.ŏ	
1	5		4.0	0.0	0.0	
1	6		5.0	0.0	0.0	
1	2 2		6.U 7.0	0.0	0.0	
i	9		8.0	ŏ.ŏ	ŏ.ŏ	
1	10	C	9.0	0.0	0.0	
1	11	L	10.0	0.0	0.0	
1	12	2	11.0	0.0	0.0	
i	14	1	13.0	0.0	0.0	
1	1:	5	14.0	0.0	ō. ō	
1	10	5	15.0	0.0	0.0	
1	17	7	16.0	0.0	0.0	
1	10	3	17.0	-1.0	0.0	
i	20	5	17.0	-2.0	ŏ.ŏ	
1	21	L	17.0	-3.0	0.0	
1	22	2	17.0	-4.0	0.0	
1	2:	5	17.0	-5.0	0.0	
1	2.	+ 5	17.0	-7.0	0.0	
ī	26	5	17.0	-8.0	0.0	
1	27	7	17.0	-9.0	0.0	
1	28	3	17.0	-10.0	0.0	
1	23	9 1	17.0	-12.0	0.0	
i	31	ĭ	16.0	-12.0	ŏ.ŏ	
1	32	2	15.0	-12.0	0.0	
1	33	3	14.0	-12.0	0.0	
1	34	+ 5	13.U	-12.0	0.0	
i	36	5	11.0	-12.0	0.0	
ī	37	7	10.0	-12.0	0.0	
1	38	3	9.0	-12.0	0.0	
1	39	9	8.0	-12.0	0.0	
1	41	5	7.0	-12.0	0.0	~
<						>
						Linea 1, color

2.Generazione delle sequenze

I principali dispositivi quadripolari

A M B N <u>a</u> <u>a</u> <u>a</u> K=3πa

Wenner-Schlumberger

Α		M N		В
	na	l a l	na	
		K = π n (n + 1	I)a	-

18

Esistono due metodi per la generazione delle sequenze di misura (*menu SEQUENCE*)

MAKE MULTI-BOREHOLE SEQUENCE

Genera le sequenze per configurazioni *cross-cable,* cioè con trasmettitori e ricevitori su cavi diversi (multi-borehole, surface 3D, foro-superficie)

Perchè due metodi per la generazione delle sequenze?

MAKE SURFACE SEQUENCE

Consente la costruzione di sequenze secondo una logica DIREZIONALE

I quadripoli sono costruiti combinando elettrodi A,B,M,N che **sono allineati** lungo la direzione x, y o le due diagonali principali.

MAKE MULTI-BOREHOLE SEQUENCE

Consente la costruzione di sequenze secondo una logica di APPARTENENZA

I quadripoli sono costruiti combinando elettrodi A, B,M,N che **appartengono a cavi** comuni (quadripoli common-cable) o diversi (cross-cable).

Quando è preferibile usare questa modalità?

1) **Profili 2D** da acquisire con le classiche configurazioni Wenner, Wenner-Shlumberger, dipolo-dipolo, polo-dipolo e polo-polo

2) Griglie di superficie 3D

Come funziona

		· · · · · · · · · · · · · · · · · · ·		
	an	Son		ncor
		264		
			_	

🛁 ERILab Sequencer					
<u>File Layout Sequence Tools Help</u>					
Surface Sequence Pole-Pole Pole-Dip. Line D D Par. D-D Wenner W-Schlu. Gra Tx dipole length and direction List 'a' spacings 123	d. A.				
• Tx and Rx on common cable • Tx and Rx on different cables					
Constraints KGeom 0 nL 12345	Û				
5b. Vincola la generazione dei quardipoli al fattore geometrico.					
Se 0: nessun vincolo Se N>0: crea solo quadripoli con abs(K) <n< td=""></n<>					
Ogni volta cho si promo il tasto di croaziono misuro, vongono					

Ogni volta che si preme il tasto di creazione misure, vengono generate (ed aggiunte alle precedenti, se presenti) TUTTE le misure secondo quanto impostato nella maschera

- 1. Selezionare il tipo di array (sono consentite selezioni multiple)
- 2. Impostare l'apertura del dipolo TX/RX -Specificare tutti gli "a" desiderati oppure
 - selezionare INIZIO:INCREMENTO:FINE (per esempio: 1:2:6)
 - 3. Impostare la direzione dei guadripoli (ABMN lungo x, y, diag1, diag2)
 - 4. Impostare Tx e Rx sullo stesso cavo o su cavi diversi (seconda opzione deprecata, preferibile ricorrere a "Make *Multi-Borehole sequence*")
 - 5a. Impostare i livelli, distanza tra dipolo TX e dipolo RX (solo per dipoledipole, pole-dipole, ...)
 - specif. tutti gli "n" desiderati o
 - selezionare INIZIO:INCR.:FINE (per esempio: 1:1:10)
 - 6. Crea/aggiungi (o cancella) quadripoli

Apertura del dipolo TX (e RX)

List 'a' spacings rappresenta l'apertura dei dipoli TX e RX in termini di spaziatura elettrodica:

- 'a' = 1 : i dipoli TX e RX avranno solo apertura pari alla spaziatura elettrodica
- 'a' = 1 2 3 : i dipoli TX ed RX avranno aperture 1x, 2x e 3x la spaz. elettrodica

'nL' rappresenta la distanza in termini di n (livelli) tra TX e RX

nL = 1 : la distanza tra dipolo TX ed RX è pari ad UNA VOLTA la larghezza del dipolo di ricezione n = 1 2 3 : la distanza tra dipolo TX ed RX è pari ad UNA, DUE e TRE VOLTE la larghezza del dipolo di ricezione

2

NGM7B8A9

N14 M16 B18 A20

a = 1

n = 2

n = 3

E' possibile visualizzare la **lista dei quadripoli generati** premendo sulla tastiera F11 o dalla voce di menu *Sequence->View quadripole list*

E' possibile visualizzare gli elettrodi ABMN associati a ciascun quadripolo generato:

Scorrendo la lista dei quadripoli

 Posizionando il mouse sopra uno pseudoquadripolo (cerchietto blu) e premendo il tasto destro del mouse: elettrodi AB di corrente in rosso; elettrodi di potenziale MN in verde.

ERTLab Sequencer Ele Layout Sequence Iools Help Surface Sequence Pole-Pole Pole-Dip. Line D-D Par D-D Wenner W-Schlu Grad I x dipole length and direction List 'a' spacings 12 マーナー レーンー Constraints KGeom 0 nL 123	$ \begin{array}{ c c c c c } \hline \hline View & \hline \hline View & \hline \hline \hline View & \hline \hline \hline \hline View & \hline $	
3D View		
414 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M20 N22	Esempio di sequenza 2D di superficie polo-dipolo:
• • • • • • • • • • • • • • • • • • •		- Tx dipole Length "List a spacing" = 1 2
0000000000000 000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- nL = 1 2 3 (totale n° 3 livelli) - Una sola direzione \rightarrow (x)
(×= 17.38; Z= -15.88)	I⊄ Gind Auto Gind Spc. 1.0	

ERTLab Sequencer Eile Layout Sequence Tools Help Surface Sequence Pole-Pole Pole-Dip. Line D-D Par. D-D Wenner W-Schlu. Grad. / Ortho. Tx dipole length and direction List 'a' spacings 12 0.86 2 2 V >V 4V 4V K Pan: Ctrl+I ftMouse C Tx and Rx on different cables Cable Grnd V Quad - Constraints 🔽 Lbi 🔽 Box 0 nL 123 KGeom Electrodes: Graphical -3D View

Esempio di sequenza 3D con griglia di superficie polo-dipolo

- Tx dipole Length "List a spacing" = 1 2
- nL = 1 2 3 (totale n° 3 livelli)
- Quadripoli lungo x, y e diagonali

Esempio di sequenza polo-dipolo 3D con griglia di superficie

- OPZIONE "Tx and Rx on different cables" SELEZIONATA (funzione deprecata)

Consente la generazione rapida di una sequenza di misura costituita da **tutte le combinazioni di quadripoli con il trasmettitore su un cavo ed il ricevitore su un secondo cavo**.

Occorre attenzione nell'utilizzo di questa funzione che non consente il controllo diretto dei livelli e può generare quadripoli con rapporto segnale/rumore troppo basso.

Altri esempi

Array: Dipole- dipole Generazione quadripoli lungo la dir. Y Apertura del dipolo TX "a": 1 Level "n": 1

Array: Wenner Generazione quadripoli lungo la Diagonale 1 Apertura del dipolo TX "a": 1

Elettrodi di misura della differenza di potenziale V

Surface Sequence					
Pole-Pole Pole-Dip. Line D-D Par. D-D Wenner W-Schlu. Grad. A.					
Tx dipole length and direction					
List 'a' spacings 1 2 3					
$\checkmark \rightarrow [\lor] \lor [\lor]$					
Tx and Rx on common cable Tx and Rx on different cables					
Constraints KGeom 0 nL -10:10					

L'impostazione dei **livelli nL** è consentita anche per **valori negativi.**

In questo caso il **ricevitore precede il trasmettitore** in termini di numerazione degli elettrodi.

(In array dipolo-dipolo questo implica la generazione di quadripoli reciproci).

- Surface Sequence	
Surface Sequence	
Pole-Pole Pole-Dip. Line D-D Par.	D-D Wenner W-Schlu, Grad. A.
Tx dipole length and direction	
List 'a' spacings 123	
$\boxed{\checkmark} \rightarrow \boxed{~} \checkmark \boxed{~} \lor \boxed{~} \lor$	
Tx and Rx on common cable	C Tx and Rx on different cables
Constraints	
KGeom 0 nL -48:48	MN U

L'impostazione dei livelli nL pari a:

nL= -NE: NE (es.: nL=-48:48)

(con NE= numero totale di elettrodi)

consente di generare tutte l**e combinazioni possibili trasmettitore/ricevitore** per ciascuna apertura "a" dei dipoli.

Questa opzione è molto utile per la generazione di sequenze UNIVERSALI.

Prima del "filtraggio" per K (=0) Totale 12796 quadripoli

Dopo il "filtraggio" per K (=1000) Totale 10749 quadripoli

L'approccio "universale" può talvolta definire troppi quadripoli, molti dei quali saranno probabilmente affetti da un rapporto segnale rumore basso (dist. Tx-Rx troppo alta - ricordare che ρ = KV/I).

Per ovviare a ciò, e se la geometria elettrodica è nota con sufficiente accuratezza, si può inserire un "Constrain K Geom." per limitare il numero di misure.

Per array polo dipolo generalmente viene scelto pari a circa 1000/1500 volte la spaziatura elettrodica (es. spaziatura el. 1 m \rightarrow K Geom = 1000-1500).

Quando è preferibile usare questa modalità?

- 1) Acquisizioni in due o più fori
- 2) Acquisizioni 3D di superficie a forma di L, C o loop di elettrodi
- 3) Acquisizioni miste simultanee foro-superficie

Come funziona

ERTLab Seque	r <mark>icer</mark> r <mark>ice <u>T</u>ools <u>H</u>elp</mark>
- Multi-Borehole Seau Pole-Pole Pole-I	Dip. DipDip. Wenner W-Schlu.
 TX-RX D istance ✓ Common Cable ✓ Cross Cable 	n 12345 Tx and Rx mode Tx and Rx mode N ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Dipole length Tx-F a List 123 KGeom	Add group: Add 0 List of groups:
5b. Vincola la ge geometrico	nerazione dei quardipoli al fattore
Se 0: nessu Se N>0: cre	n vincolo a solo quadripoli con abs(K) <n< td=""></n<>

- 1. Selezionare il tipo di array (sono consentiti array multipli)
 - 2. Scegliere la tipologia di quadripoli: Common cable e/o Cross cable
- 3. Impostare i livelli n, distanza TX-RX in termini di apertura del dipolo
 - Specificare tutti gli "n" desiderati o
 - Selezionare INIZIO:INCR::FINE
 - 4. Impostare la modalità TX ed RX (solo per elettrodi in foro,
 - V = dipolo lungo il foro;
 - H= dipolo trasversale ai fori)
 - 5a. Impostare l'apertura del dipolo TX ed RX.
 - Specificare tutti gli "a" desiderati o
 - Selezionare INIZIO:INCR.:FINE
 - 6. **Aggiungere gruppi di cavi**, poi selezionare il gruppo corrente usato per la creazione delle sequenze
 - 7. **Creare** (o aggiungere) i quadripoli 34

Impostazione dei parametri principali – Levels "n"

$_{\Box}$ TX-RX Distance =	
🔲 Common Cable	n 123456789101112
Cross Cable	n 123456789101112

Per i quadripoli di tipo *cross-cable* i livelli "n" sono convenzionalmente definiti con riferimento alla distanza tra dipoli Tx ed Rx verticali secondo lo schema seguente:

Impostazione dei parametri principali – List of groups

Multi-Borehole Seauence—								
Pole-Pole Pole-Dip. DipDip. Wenner W-Schlu.								
TX-RX Distance Tx and Rx mode								
🔽 Common Cable 🛛 n 🗍 2	2345		Τ×	▼ ∨□ H	MN			
Cross Cable n 12	Rx	Г ∨□ н	Ŵ	P				
Dipole length Tx-Rx	- Groups of Cab	les						
a List 123	Add group:	1234			Add	l î		
KGeom 0	List of groups:	1234			-	E		
		1234						
3D View		124						
		312						
		All Cables						

Per i quadripoli *cross-cable,* il campo "*List of Groups*" definisce quali combinazioni di TX/RX vengono generate.

Es. se sono presenti i cavi 1, 2, 3, 4 ed impostiamo nel campo "List of groups" (cavi correnti) 1 2 4, saranno generati i seguenti quadripoli:

- I) quadripoli con TX sul cavo 1 RX sul cavo 2
- **II)** quadripoli con TX sul cavo 1 RX sul cavo 4
- III) quadripoli con TX sul cavo 2 RX sul cavo 4

Esempio - Multi-borehole

Array: Dipole-dipole Common Cable TX ed RX: Vertical TX Dipole length "a": 2 Level"n": 1

Array: Dipole-dipole Cross Cable TX and RX: Horizontal List of Groups: 2 3 4

Esempio – Configurazione Polo-dipolo per geometrie a L

Esempio di sequenza dipolo-dipolo:

- Solo cross cable
- n = 1 (totale n° 1 livello *Tx-Rx distance*)
- Apertura Tx e Rx (*Dipole Length* Tx-Rx= 1a, 2a, 3a

Esempio di sequenza 3D dipolo-dipolo:

- Common + cross cable
- n = 5 (totale n° 1 livello *Tx-Rx distance*)
- Apertura Tx e Rx (Dipole Length Tx-Rx= 1a, 2a, 3a, 4a, 5a
- Tx solo su cavo 1-24 ed Rx solo su cavo 25-48 (List of groups "1 2")

Esempio di sequenza 3D dipolo-dipolo

- Common + cross cable
- N = 5 (totale n° 1 livello *Tx-Rx distance*)
- Apertura Tx e Rx (Dipole Length Tx-Rx= 1a, 2a, 3a, 4a, 5a
- Tx su cavo 1-24 ed Rx su cavo 25-48 (List of groups "1 2")
- <u>Tx şu cavo 25-48 ed Rx su cavo 1-24 (List of groups "2 1")</u>

Esempio di sequenza 3D dipolo-dipolo UNIVERSALE a 48 elettrodi

- Unico Common cable da 1 a 48 el. perimetrali creato da Layout >> Grid
- Tx-Rx distance (solo Common cable spuntato): -48:48
- Apertura Tx e Rx (Dipole Length Tx-Rx= 1a, 2a, 3a, 4a, 5a
- Fattore geometrico K = 0

Questi 4152 quadripoli possono essere filtrati/ridotti attraverso il vincolo a fattore K

Ad es. con K = 2000 si ottengono 2182 quadripoli totali

#4152 misure

<u>#2182 misure</u>

Esempio – Generazione sequenze da foro

ERTLab Sequencer	and the second se	
e Layout Sequence]	ools <u>H</u> elp	
fulti-Borehole Sequence		View
Pole-Pole Pole-Dip. Dip.	Dip. Wenner W-Schlu.	< 180. ♥ θ > Ortho. Y↑
TX-RX Distance	Tx and Rx mode	
Common Cable n 123	45 Тх 🔽 VГ Н 🛅	₹ <u>113</u> ₹ 2 > Z†
Cross Cable n -24:2	BX 🔽 V 🗆 H	Pan: Ctrl+LftMouse
Dipole length Tx-Rx	aroups of Cables	
List 123	Add group: 12 Ad	
Geom 0 l	ist of groups: All Cables	Electrodes: Electrode ID
) View		
		—
= -4.59; Z= -9.25)		

- 1. Impostare la geometria (2 cavi da 24 elettrodi).
- 2. Disabilitare le misure common cable.

3. Impostare le misure *cross cable* -24:24 (per generare tutte le combinazioni TX/RX).

4. Impostare l**'apertura "a"** = 1, 2, 3; se i fori sono molto distanti si può omettere a= 1 e lasciare 2 e 3.

5. Scegliere l**'array** Pole-Dip. oppure Dip.Dip. e generare le misure TX cavo 1e RX cavo 2 (list of groups=1 2).

6. Aggiungere il *Group of Cables.* 2 1 e generare le misure TX cavo 2 e RX cavo 1.

Tool grafici

	🚰 ERTLab Sequencer	
	<u>File Layout Sequence Tools H</u> elp	
	Surface Sequence	View
	Pole-Pole Pole-Dip. Line D-D Par. D-D Wenner W-Schlu. Grad. A.	$\langle 180. \forall \theta \rangle$ Ortho. $\forall \uparrow$
	Tx dipole length and direction	
	List'a spacings 123	All I I Z ≥ All All All All All All All All All A
	G Tu and Bu on common cable	Show:
-	Constraints	Promondo il tacto ALT o traccinando
ERTLab Sequencer	KGeom 0 nL 12345	
File Layout Sequence Tools Help	2D16au	il mouse tenendo premuto il tasto
Surface Sequence		n mouse tenendo premuto n tasto
Pole-Pole Pole-Dip. Line D-D Par. D-D Wenner W-Schlu. Gra		sinistro è possibile selezionare un
List 'a' spacings 123		
		aruppo di elettrodi
© Tx and Rx on common cable C Tx and Rx on different cables		5 11
Constraints e e		
KGeom 0 nL 1 2 3 4 5		
3D View		
	••••••••	• • • • • • • • • • • • • • • • • • • •
Gli alattradi casì sala-	zionati	
Gil eletti oui cosi selez		
sono visualizzati in	BILL	
	••••	****
sono visualizzati in	BLU	••••

🚄 E	RTLab S	Sequence	r.									
File	Layout	Sequence	Tools	er Er	TLab Sequ	encer	r 					
Su F L	Coord Cable Grid Electr Make	dinate List s odes Sequences V	ne D on	Eile ! N. 1 2 3 4 5 6 7 8 9	_ayout Sequ Cable 1 1 1 1 1 1 1 1 1 1 1	El. 1 2 3 4 5 6 7 8 9	<u>Tools</u> <u>H</u> el X 0. 1. 2. 3. 4. 5. 6. 7. 8	P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Z 0. 0. 0. 0. 0. 0. 0. 0. 0.	usd 1 1 1 1 1 1 1 1 1	Roll 0 0 0 0 0 0 0 0	
				Set	as Roll R	eset Ro	bll			Set as	Skip Re:	set Skip

Per gli elettrodi selezionati può essere impostata la proprietà ROLL o quella SKIP:

- Set as roll: durante la generazione della sequenza i quadripoli che hanno: tutti gli elettrodi (A e B e M ed N) impostati come "set as roll" sono rimossi dal *set* di misure

- Set as skip: durante la generazione della sequenza i quadripoli che hanno:

almeno un elettrodo (A o B o M o N) impostato come "set as skip" sono rimossi dal set di misure

Generazione di sequenza Roll-along

🐱 ERTLab Sequencer	
File Layout Sequence Tools Help	
Surface Sequence	
Pole-Pole Pole-Dip. Line D-D Par. D-D Wenner W-Schlu. Grad A Tx dipole length and direction Image: Comparison of the streng st	
Constraints Image: Constraints KGeom 0 nL 1 2 3 4 5 Image: Constraints Image: Constraints Image: Constraints Image	
3D View	_
Selezionare e impostare come "Set	as roll"
•••••••••••••••••••••••	••
0000000000000000	
00000000000000	
0000000000000	
000000000000000000000000000000000000000	
Quadripoli generati	
0000000000000	
000000000	
000000	

. . .

Tools

La sequenza generata può essere esportata in diversi formati

File	Layout Seq	uence	Tools	Help	
	Open +	nce-			
	Save 🔸		Cables		chlu
	Quit]	MPT DA	S file	hr
V	Common Cable		ERTLab		[] -
	Cross Cable		Electre		F
	ipole length Tx-F		MPT		E
a	List 123		MAE ser	n file	L
K	âeom		ARES ud	ls file	s
⊢ 3D	View				-

